p53/mdm2 feedback loop sustains miR-221 expression and dictates the response to anticancer treatments in hepatocellular carcinoma.
نویسندگان
چکیده
UNLABELLED The overexpression of microRNA-221 (miR-221) is reported in several human cancers including hepatocellular carcinoma, and its targeting by tailored treatments has been proposed. The evidence supporting the role of miR-221 in cancer is growing and has been mainly focused on the discovery of miR-221 targets as well as on its possible therapeutic exploitations. However, the mechanism sustaining miR-221 aberrant expression remains to be elucidated. In this study, MDM2 (E3 ubiquitin-protein ligase homolog), a known p53 (TP53) modulator, is identified as a direct target of miR-221, and a feed-forward loop is described that sustains miR-221 aberrant expression. Interestingly, miR-221 can activate the p53/mdm2 axis by inhibiting MDM2 and, in turn, p53 activation contributes to miR-221 enhanced expression. Moreover, by modulating the p53 axis, miR-221 impacts cell-cycle progression and apoptotic response to doxorubicin in hepatocellular carcinoma-derived cell lines. Finally, CpG island methylation status was assessed as a causative event associated with miR-221 upregulation in hepatocellular carcinoma cells and primary tumor specimens. In hepatocellular carcinoma-derived cell lines, pharmacologically induced DNA hypomethylation potentiated a significant increase in miR-221 expression. These data were confirmed in clinical specimens of hepatocellular carcinoma in which elevated miR-221 expression was associated with the simultaneous presence of wild-type p53 and DNA hypomethylation. IMPLICATIONS These findings reveal a novel miR-221-sustained regulatory loop that determines a p53-context-specific response to doxorubicin treatment in hepatocellular carcinoma.
منابع مشابه
Cell Cycle and Senescence p53/mdm2 Feedback Loop Sustains miR-221 Expression and Dictates the Response to Anticancer Treatments in Hepatocellular Carcinoma
The overexpression of microRNA-221 (miR-221) is reported in several human cancers including hepatocellular carcinoma, and its targeting by tailored treatments has been proposed. The evidence supporting the role ofmiR-221 in cancer is growing and has been mainly focused on the discovery of miR-221 targets as well as on its possible therapeutic exploitations. However, the mechanism sustaining miR...
متن کاملSuppression of p53 by Notch3 is mediated by Cyclin G1 and sustained by MDM2 and miR-221 axis in hepatocellular carcinoma
To successfully target Notch receptors as part of a multidrug anticancer strategy, it will be essential to fully characterize the factors that are modulated by Notch signaling. We recently reported that Notch3 silencing in HCC results in p53 up-regulation in vitro and, therefore, we focused on the mechanisms that associate Notch3 to p53 protein expression. We explored the regulation of p53 by N...
متن کاملmiR-605 joins p53 network to form a p53:miR-605:Mdm2 positive feedback loop in response to stress.
In cancers with wild-type (WT) p53 status, the function of p53 is inhibited through direct interaction with Mdm2 oncoprotein, a negative feedback loop to limit the function of p53. In response to cellular stress, p53 escapes the p53:Mdm2 negative feedback to accumulate rapidly to induce cell cycle arrest and apoptosis. We demonstrate herein that an microRNA miR-605 is a new component in the p53...
متن کاملmiR-26b enhances radiosensitivity of hepatocellular carcinoma cells by targeting EphA2
Objective(s): Although low-dose radiotherapy (RT) that involves low collateral damage is more suitable for hepatocellular carcinoma (HCC) than traditional high-dose RT, but to achieve satisfactory therapeutic effect with low-dose RT, it is necessary to sensitize HCC cells to irradiation. This study was aimed to determine whether radiosensitivity of HCC cells can be enhanced using miR-26b by tar...
متن کاملEffects of Trichostatin A on the Histone Deacetylases (HDACs), Intrinsic Apoptotic Pathway, p21/Waf1/Cip1, and p53 in Human Neuroblastoma, Glioblastoma, Hepatocellular Carcinoma, and Colon Cancer Cell Lines
Background: The aberrant and altered patterns of gene expression play an important role in the biology of cancer and tumorigenesis. DNA methylation and histone deacetylation are the most studied epigenetic mechanisms. Histone deacetylase inhibitors (HDACIs) such as valproic acid (VPA) and trichostatin A (TSA) are a group of anticancer compounds for the treatment of solid and hematological canc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer research : MCR
دوره 12 2 شماره
صفحات -
تاریخ انتشار 2014